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6.1 PERSISTENT HOMOLOGY

Consider a filtration F•K of a simplicial complex K (as in Definition 1.6):

F0K ⊂ F1K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K,

and denote the inclusion simplicial maps by gi : FiK ↪→ Fi+1K. Here is one such filtration:

There are induced linear maps on homology Hkgi : Hk(FiK) → Hk(Fi+1K) in every dimension
k ≥ 0 (see Sections 2 and 3 of Chapter 4). For a fixed k, these linear maps fit together into a
sequence of vector spaces:

Hk(F0K)
Hkg0

// Hk(F1K)
Hkg1

// · · ·
Hkgn−2

// Hk(Fn−1K)
Hkgn−1

// Hk(FnK).

There are several other induced maps on homology hiding in plain sight — for instance,
we have said nothing about the inclusion g1 ◦ g0 : F0K ↪→ F2K. Fortunately for us, homology
is functorial (see Proposition 4.8); so the missing map Hk(g1 ◦ g0) is easily reconstructed by
composing the available maps Hkg1 and Hkg0.

More generally, for any pair i < j of filtration indices in {0, . . . , n}, the map induced on ho-
mology by the inclusion gi→j : FiK ↪→ FjK is the composite Hk(FiK) → Hk(FjK) in our diagram
of vector spaces, i.e.,

Hkgi→j = Hkgj−1 ◦Hkgj−1 ◦ · · · ◦Hkgi+1 ◦Hkgi.

Such maps Hkgi→j contain crucial information which allows us to coherently connect the k-th
homology groups of all the subcomplexes which appear in the filtration F• of K. The key point
is that in order to extract this information, we must study sequences of vector spaces; thus, we
are inexorably led to the following definition.

DEFINITION 6.1. An N-indexed persistence module over F is a sequence (V•, a•) of F-vector
spaces Vk and linear maps ak defined for k ≥ 0 which fit into a diagram

V0
a0

// V1
a1

// V2
a2

// · · ·
ak−1

// Vk
ak

// Vk+1
ak+1

// · · ·

The maps a• are not required to satisfy ak ◦ ak−1 = 0, so persistence modules need not be cochain
complexes (compare Definition 5.1); conversely, every cochain complex is automatically a per-
sistence module. In any event, for every pair i ≤ j in N we will write the composite map
aj−1 ◦ aj−2 ◦ · · · ◦ ai via the shorthand ai→j : Vi → Vj, with the implicit understanding that ai→i is
just the identity map on Vi.

REMARK 6.2. We say that a persistence module (V•, a•) is of finite type if dim Vi < ∞ for
all i ≥ 0 and if the maps ai : Vi → Vi+1 are isomorphisms for all i � 0. Both these conditions
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are satisfied by persistence modules obtained from homology groups of filtered simplicial
complexes.

We now turn to the objects of interest.

DEFINITION 6.3. For each pair i ≤ j of integers, the associated persistent homology group
of a persistence module (V•, a•) is the subspace of Vj given by

PHi→j(V•, a•) = img(ai→j).

It is not too difficult to check that PHi→j(V•, a•) is a subset of PHi′→j(V•, a•) whenever i′ ≥ i.
We say that a vector v in Vi is born at filtration index i if v does not lie in img ai−1; similarly, v
is said to die at filtration index j ≥ i whenever j is the smallest number satisfying ai→j(v) = 0;
by convention, the death index of v equals +∞ no such j exists, i.e., if ai→j(v) is nonzero for all
j ≥ i. The persistence of v is defined to be death minus birth, i.e., (j− i).

REMARK 6.4. In the special case where our persistence module arises from taking the k-
th homology groups of a filtered simplicial complex as described above, we will denote the
persistent homology groups as PHkgi→j(F•K) for all i ≤ j. The group PHkgi→j(F•K) consists of
precisely those homology classes in Hk(FiK) which continue to generate nontrivial homology
in the larger complex FjK — geometrically, these are precisely those (equivalence classes of)
k-cycles in FiK which do not become k-boundaries in FjK. Writing ∂i

k for the k-th boundary
operator of each simplicial complex FiK, we have

PHkgi→j(F•K) = Hkgi→j(ker ∂i
k)/[Hkgi→j(ker ∂i

k) ∩ img ∂
j
k+1].

And in particular, PHkgi→i(F•K) is just the k-th homology group of FiK.

The study of persistence modules is greatly facilitated by two miracles — an inherently alge-
braic structure theorem and a viscerally geometric stability theorem. The first of these allows
us to represent every persistence module using the combinatorial data called its barcode. And
the stability theorem asserts that the assignment of barcodes to modules is an isometry under
certain natural metrics. We will describe the structure theorem in the next section

6.2 BARCODES

The quest to understand persistent homology groups begins, like many good quests, with the
establishment of a categorical framework.

DEFINITION 6.5. A morphism between persistence modules (V•, a•) and (W•, b•) is a family
of linear maps φk : Vk →Wk which satisfy

bi ◦ φi = φi+1 ◦ ai

for every i ≥ 0

This definition amounts to requiring the commutativity of all squares in the following dia-
gram of vector spaces:

V0
a0

//

φ0
��

V1

φ1
��

a1
// · · ·

ak−1
// Vk

φk
��

ak
// Vk+1

φk+1
��

ak+1
// · · ·

W0 b0

// W1 b1

//// · · ·
bk−1

// Wk bk

// Wk+1 bk+1

// · · ·
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The pair (persistence modules, their morphisms) forms a category in the sense of Definition 4.1.
We call φ• : (V•, a•) → (W•, b•) an isomorphism if every φi is an invertible linear map of vector
spaces in the usual sense. If such an isomorphism exists, we write (V•, a•) ' (W•, b•).

DEFINITION 6.6. The direct sum of two persistence modules (V•, a•) and (W•, b•) is a new
persistence module (V• ⊕W•, a• ⊕ b•) defined as follows: its k-th vector space is the direct sum
Vi ⊕Wi, while the linear map ai ⊕ bi has matrix representation

[
ai 0
0 bi

]
.

Persistent homology groups of direct sums are direct sums of persistent homology groups (see
Exercise 6.1 of this Chapter for a precise statement.) We say that a persistence module (I•, c•)
is indecomposable if it does not admit any interesting direct sum decompositions — in other
words, anytime we have an isomorphism

(I•, c•) ' (V•, a•)⊕ (W•, b•),

of persistence modules, one of the factors on the right side will be isomorphic to (I•, c•), while
the other one will be zero everywhere. The following result highlights a particularly important
class of indecomposable persistent modules.

PROPOSITION 6.7. Let (I•, c•) be a nonzero N-indexed persistence module over a field F. Assume
that there exist indices i ≤ j with i in N and j in N∪ {∞} so that

dim Ip =

{
1 i ≤ p ≤ j
0 otherwise

, and rank (cp : Ip → Ip+1) =

{
1 i ≤ p < j
0 otherwise

.

Then, (I•, c•) is indecomposable.

PROOF. Consider any direct sum decomposition (I•, c•) ' (V•, a•)⊕ (W•, b•). For each p in
{i, i + 1, . . . , j} we have dim Vp + dim Wp = dim Ip = 1; let’s assume without loss of generality
that dim Vi = 1 and dim Wi = 0. This forces the map bi to be zero, and by Definition 6.5 we now
have a commutative diagram which looks like:

F
'

//

'
��

F

'
��

F⊕ 0 [
ai 0
0 0

] // Vi+1 ⊕Wi+1

with all arrows labelled ' being vector space isomorphisms. It follows that ai has rank one,
dim Vi+1 = 1, and dim Wi+1 = 0. Continuing onwards by induction on i, we see that (V•, a•) is
isomorphic to (I•, c•) while (W•, b•) is trivial; thus, (I•, c•) is indecomposable as desired. �

Up to isomorphism, every indecomposable module of the form described in the proposition
above is completely characterized by knowledge of the pair of integers i ≤ j (allowing for the
fact that j might equal ∞).

DEFINITION 6.8. For each pair 0 ≤ i ≤ j ≤ ∞ (with i 6= ∞), the N-indexed interval module
(Ii,j
• , ci,j

• ) over F is given by

Ii,j
p =

{
F i ≤ p ≤ j
0 otherwise

, and ci,j
p =

{
idF i ≤ p < j
0 otherwise

.

(Here idF denotes the identity map F→ F).
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The first miracle of persistent homology is the following result, which allows us to uniquely
express any N-indexed persistence module of finite type as a direct sum of finitely many interval
modules. Please do not panic (yet) if various terms in the proof appear intimidating — clarifying
remarks and concrete computations will follow.

THEOREM 6.9. [Structure Theorem] For any finite type N-indexed persistence module (V•, a•)
over F, there exists a set Bar(V•, a•) of integer pairs 0 ≤ i ≤ j ≤ ∞ (with i 6= ∞) and a function
µ : Bar(V•, a•) → N>0 to the nonzero natural numbers with the following property: there is a
direct sum decomposition

(V•, a•) '
⊕
[i,j]

(Ii,j
• , ci,j

• )
µ(i,j).

Here the indices [i, j] range over elements of Bar(V•, a•). Moreover, this direct sum decomposition is
unique (up to isomorphism of persistence modules).

PROOF. Since (V•, a•) is of finite type, there is some n ≥ 0 so that every ai : Vi → Vi+1 is an
isomorphism for i > n. Consider the vector space V =

⊕n
0 Vi and the linear map t : V → V

sending each vector v = (v0, v1, . . . , vn) to the shifted vector

t(v) =
(
0, a0(v0), a1(v1), . . . , an−1(vn−1)

)
.

This gives V the structure of a finitely generated F[t]-module where F[t] is the polynomial ring
over F in a single variable t. Since F[t] is a principal ideal domain whenever F is a field, every
finitely generated F[t]-module decomposes uniquely as a direct sum into two parts

V = F⊕ T,

where F is called free while T is torsion. Moreover, F is a direct sum of F[t]-modules of the form
ti ·F[t] for some i ≥ 0; each such free summand is isomorphic to an interval module of the form
(Ii,∞
• , ci,∞

• ). Similarly, the torsion part T is a direct sum of modules of the form ti · F[t]/(tj), i.e.,
a free module quotient by an ideal (tj)CF[t] with 0 ≤ i < j; each such summand is isomorphic
to the interval module (Ii,j

• , ci,j
• ). These (free and torsion) interval modules might occur in the

decomposition with any multiplicities ≥ 1, which are catalogued by the function µ. �

While quite miraculous in its outcomes, this argument has two serious drawbacks arising
from the fact that it invokes the classification of finitely generated F[t]-modules. First, this proof
strategy will not survive if we attempt something similar with Z[t]-modules or even F[t1, t2]-
modules. Second, the deus ex machina nature of appealing to this classification renders life some-
what difficult for those who seek to understand the decomposition of (V•, a•) on a more concrete
level. There is no remedy for the first problem, but we can offer some solace to those afflicted by
the second malady. The next Section contains a very concrete algorithm for computing interval-
decompositions in the case of maximal interest to us, i.e., where (V•, a•) arises from the homol-
ogy groups of a filtered simplicial complex.

DEFINITION 6.10. For each (N-indexed, finite type) persistence module (V•, a•) over F, the
collection Bar(V•, a•) of intervals [i, j] and their multiplicities µ(i, j) ≥ 1 (whose existence and
uniqueness is guaranteed by Theorem 6.9) is called the barcode of (V•, a•).

The content of Theorem 6.9 is that every finite type persistence module is uniquely determined
up to isomorphism by the combinatorial data consisting of intervals [i, j] in Bar(V•, a•) and their
multiplicities µ(i, j). For brevity, we will denote multiplicities as superscripts, so [1, 4]3 means
that the bar [1, 3] occurs with multiplicity µ(1, 4) = 3 in a given barcode.



6. ALGORITHM (FOR FILTRATIONS) 75

6.3 ALGORITHM (FOR FILTRATIONS)
Let F•K be a filtered simplicial complex

F0K ⊂ F1K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K,

and for each simplex σ of K let b(σ) denote the smallest index i in {0, . . . , n} for which σ lies in
FiK. Since each FiK forms a subcomplex of K, it follows that b is an order preserving map on the
simplices of K, i.e., σ ≤ τ in K implies b(σ) ≤ b(τ). In more prosaic terms, a simplex can only
enter the filtration at index i if all of its faces are already present. Writing gi→j for the inclusion
map FiK ↪→ FjK for i ≤ j, here we will describe an efficient algorithm which computes all the
persistent homology groups PHkgi→j(F•K) at once by exploiting Theorem 6.9.

0. Setup: Order the simplices of K as {σ1, σ2, . . . , σN} so that σ precedes τ in this ordering
when either on of the following conditions holds:

• we have b(σ) ≤ b(τ), or
• we have b(σ) = b(τ) and σ is a face of τ in K.

Aside from these two constraints, the simplices of K may be ordered arbitrarily.

1. Input: The input to the algorithm is an N× N matrix D described as follows. For each pair
(p, q) in {1, . . . , N}2, the entry of D in the p-th row and q-th column is given by

Dpq =

{
±1 if σp ≤ σq with dim σq − dim σp = 1
0 otherwise

.

Here the sign±1 depends on an ordering of K’s vertices; in particular, this is the same sign as the
one used in the algebraic boundary operator of Definition 3.4. We will indicate the q-th column
of D by col(q) and write low(q) to indicate the largest p satisfying Dpq 6= 0, with the explicit
understanding that low(q) = 0 whenever the col(q) is entirely zero.

2. Procedure: The entire routine can be described with only six lines of pseudocode.

01 For q = 1 to N
02 Set p = low(q)
03 While some r < q satisfies low(r) = p 6= 0
04 Add (−Dpq/Dpr)·col(r) to col(q)
05 End While
06 End For

3. Output: This procedure modifies the matrix D to produce a new matrix D′ — this matrix
D′ is related to D by a change of basis since we only used column operations. In particular,
lines 03-05 attempt to incrementally zero out the q-th column of D by adding preceding columns
whose lowest nonzero entry coincides with that of col(q). Thus, when the algorithm terminates,
the p-th row of D′ can be the lowest nonzero entry low(q) of at most one column q — if there is
such a q, then the entry D′pq is said to form a pivot in the output matrix D′.

4. The Barcodes: For each k ≥ 0, let’s write Bark(F•K) to indicate the barcode of the per-
sistence module obtained by taking the k-th homology groups of F•K. We can read off such
barcodes (and hence determine these persistence modules thanks to Theorem 6.9) by traversing
the columns of D′ and applying this handy flow-chart:
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5. Example: When this algorithm is run on the filtration depicted in Section 1 (reproduced
below), it will output the barcode

{
[0, ∞], [0, 1]2, [1, 2]

}
for 0-dimensional persistent homology

and the barcode {[1, ∞], [2, 3]} for 1-dimensional persistent homology, perfectly capturing the
evolution of connected components and loops at various stages in the filtration:

The starting point of the algorithm for this filtration is the following matrix D as described in the
Input step above — all unlabelled entries are zero:
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No operations are performed on ab’s column, so the 1 in that column (in b’s row) serves as a
pivot. This pivot will contribute one of the two [0, 1] bars in the 0-dimensional barcode of this
filtration. The first interesting column operation occurs when the 1 in ac’s column is used to
clear out the 1 in bc’s column (both corresponding to c’s row). This changes the lowest entry in
bc’s column to the −1 in b’s row, and we then use our pivot 1 in ab’s column to cancel this new
lowest entry. This will completely clear out bc’s column, and contribute the [1, ∞] bar in to the
1-dimensional barcode.

REMARK 6.11. Even on the small example described above, it is difficult to carry out the
entire algorithm by hand. Fortunately, there are several good software packages available
for computing persistent homology of filtered simplicial complexes arising in practice. In
particular, one can find many implementations of this algorithm which will compute barcodes
of Vietoris-Rips filtrations built around finite metric spaces (see Definition 1.15).

6.4 INTERLEAVING DISTANCE

Having witnessed the algebraic miracle of Theorem 6.9, we now turn to the geometric miracle,
which takes the form of a stability result. Roughly, the set of finite type persistence modules
admits the structure of a metric space, as does the set of barcodes; and with respect to the two
chosen metrics, the assignment of a barcode to a module is an isometry. Here we will describe
the desired metric on persistence modules after suitably upgrading them (and their barcodes) to
be indexed by real numbers rather than natural numbers.

DEFINITION 6.12. An R+-indexed persistence module over F is a pair (V•, a•) consisting of
an F-vector space Vt for each real number t ≥ 0 and a linear map as≤t : Vs → Vt for each pair
s ≤ t of non-negative real numbers; these maps must satisfy

(1) at≤t is the identity map on Vt for each t ≥ 0, and
(2) as≤t ◦ ar≤s = ar≤t for every triple 0 ≤ r ≤ s ≤ t of real numbers.

Put more succintly, these new persistence modules are functors of the form (R+,≤) → VectF

(see Definition 4.2). Here (R+,≤) is the category whose objects are all non-negative real num-
bers, with a unique morphism s → t whenever s ≤ t; and the codomain is the usual category of
(vector spaces, linear maps) over F.

These persistence modules are more general than the N-indexed ones from Definition 6.1: we
can always replace an N-indexed (V•, a•) by an equivalent R+-indexed (V′•, a′•) by interpolation
as follows. Writing btc for the largest integer smaller than each t in R+, define

V′t = Vbtc and a′s≤t = absc→btc. (4)

Henceforth, by persistence module we will mean the R+-indexed version defined above. For
numerous reasons, it will be extremely convenient to visualize these as a continuum of of vector
spaces living along a semi-infinite line segment connected by linear maps going from left to
right, like so:

In order to guarantee barcodes for these new persistence modules a la Theorem 6.9, one must
impose some finiteness constraints.
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DEFINITION 6.13. A persistence module (V•, a•) is called tame if two properties hold:
(1) the vector spaces Vt are finite-dimensional for all t ≥ 0, and
(2) there are only finitely many t ≥ 0, called critical values, for which the map at−ε≤t+ε :

Vt−ε → Vt+ε fails to be an isomorphism for arbitrarily small ε > 0.

Tameness allows us to use Theorem 6.9 with impunity even with the R+-indexing — each
tame persistence module (V•, a•) can be reduced to a finite type N-indexed persistence mod-
ule (V′•, a′•) as follows: let 0 ≤ t1 < t2 < · · · < tn ≤ ∞ be the critical values of (V•, a•) and
set

V′i = Vti and a′i = ati≤ti+1 . (5)

The barcode of (V′•, a′•) can now be reinterpreted as the barcode of (V•, a•) by sending each
interval [i, j] to the corresponding [ti, tj]. The interval module (I

ti,tj
• , c

ti,tj
• ) supported on [ti, tj] has

the obvious definition:

I
ti,tj
t =

{
F ti ≤ t ≤ tj

0 otherwise
and c

ti,tj
s≤t =

{
idF [s, t] ⊂ [ti, tj]

0 otherwise
.

We have arrived at the following Corollary of Theorem 6.9; to fully appreciate its content, one
should define (iso)morphisms and direct sums of tame persistence modules (as we did for their
N-indexed cousins).

COROLLARY 6.14. For every tame persistence module (V•, a•), there is a finite set Bar(V•, a•) of
intervals of the form [s, t] ⊂ R+ (possibly with t = ∞) and a multiplicity µ : Bar(V•, a•) → N>0 so
that we have a unique direct sum decomposition into interval modules

(V•, a•) '
⊕
[s,t]

(Is,t
• , cs,t

• )
µ(s,t),

with [s, t] ranging over the intervals in Bar(V•, a•).

We now seek to measure distances between persistence modules. The following notion plays
a central role.

DEFINITION 6.15. For each ε ≥ 0, an ε-interleaving between persistence modules (V•, a•)
and (W•, b•) consists of two families of linear maps

{Φt : Vt →Wt+ε | t ≥ 0} and {Ψt : Wt → Vt+ε | t ≥ 0} ,

which satisfy four criteria. First, there are two parallelogram relations:
(1) for all s ≤ t, we have Φt ◦ as≤t = bs+ε≤t+ε ◦Φs, and
(2) for all s ≤ t, we have Ψt ◦ bs≤t = as+ε≤t+ε ◦Ψs.

And second, there are two triangle relations:
(1) for all t, we have Ψt+ε ◦Φt = at≤t+2ε, and
(2) for all t, we have Φt+ε ◦Ψt = bt≤t+2ε.

These four criteria might appear opaque at a first reading; the best method of acquiring an
intuitive grasp on interleavings is to draw the commutative diagrams implied by the parallelo-
gram and triangle relations. This will require us to visualize both V• and W• along line segments
as suggested before, so that the maps Φt and Ψt connect each point t ≥ 0 on one of these lines to
the point t + ε on the other. Here, for instance, is the commuting diagram which represents the
first parallelogram relation:
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Of course, we have one such commuting diagram for every choice of s ≤ t. Similarly, here is an
illustration of the first triangle relation (there is one such commuting triangle for every t).

It might also be helpful to verify that 0-interleavings are isomorphisms of persistence modules
— this is one of the Exercises. Finally, here is the promised metric on persistence modules.

DEFINITION 6.16. The interleaving distance dInt((V•, a•), (W•, b•)) between persistence mod-
ules (V•, a•) and (W•, b•) is the infimum over all ε ≥ 0 for which there exists an ε-interleaving
between them. If no such interleaving exists, then dInt(V•, W•) = ∞.

6.5 THE STABILITY THEOREM

The barcodes Bar(V•, a•) whose existence and uniqueness is guaranteed by Corollary 6.14 for
each tame persistence module (V•, a•) are finite multi-sets of intervals [s, t] ⊂ R+ ∪∞. Here by
multi-set we simply mean that each interval [s, t] might have several copies within the barcode,
the precise number being given by the function µ(s, t). Our next goal is to impose a metric on
the set of all such multi-sets of intervals.

DEFINITION 6.17. For ε ≥ 0, an ε-matching between two multi-sets B and B′ of intervals
is a bijection ρ : B0 → B′0 between a pair of multi-subsets B0 ⊂ B and B′0 ⊂ B′ subject to the
following constraints:

(1) Every [s, t] in (B− B0) ∪ (B′ − B′0) has length t− s ≤ 2ε, and
(2) If ρ[s, t] = [s′, t′] for some [s, t] in B0, then |s− s′| ≤ ε ≥ |t− t′|.

Thus, if ρ is an ε-matching between multi-sets B and B′, then it must pair all intervals of length
exceeding 2ε of B with those of B′. And moreover, if ρ pairs [s, t] with [s′, t′], then we can obtain
s′ and t′ by perturbing s and t respectively by no more than ε:
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DEFINITION 6.18. The bottleneck distance dBot(B, B′) between multi-sets of intervals B and
B′ is the infimum over all ε ≥ 0 for which there exists an ε-matching between them.

Here is the geometric miracle of persistence modules.

THEOREM 6.19. [Stability Theorem] For every pair (V•, a•) and (W•, b•) of tame persistence
modules, we have

dInt((V•, a•), (W•, b•)) = dBot(Bar(V•, a•), Bar(W•, b•)).

Thus, the assignment of a barcode to a tame persistence module constitutes an isometry from
the metric space of tame persistence modules (with interleaving distance) to the metric space of
multi-sets of intervals (with bottleneck distance). All known proofs of the stability theorem are
too technical to be included here1. The key advantage of the stability theorem is that it confers a
certain geometric robustness to the following topological data analysis pipeline:

The first step describes the passage from a finite metric space to a filtered simplicial complex
(as in Section 6 of Chapter 1). From there we compute persistent homology barcodes as described
in Section 3 above. Since barcodes are combinatorial (rather than algebraic) objects, they can

1See Bauer and Lesnick’s 2015 paper Induced Matchings and the Algebraic Stability of Persistence Barcodes for the
most elementary proof known at present.



6. THE STABILITY THEOREM 81

easily be vectorized and fed as input into neural networks or other statistical inference tools.
The stability theorem enters the picture due to the following result.

PROPOSITION 6.20. Let P and Q be two finite point-sets in Rn which are close in the following
sense: there is some ε > 0 so that

(1) there is a point of Q within distance ε of any point of P, and
(2) there is a point of P within distance ε of every point of Q.

Then for each dimension k ≥ 0, the k-th persistent homology modules of the Vietoris-Rips filtrations
VR•(P) and VR•(Q) are 2ε-interleaved.

PROOF. Let α : P→ Q and β : Q→ P be any pair of functions guaranteed by the ε-closeness
of P and Q; thus, the Euclidean distance ‖p− α(p)‖ is no larger than ε for all p in P (and similarly
for β). Now α induces simplicial maps {αt : VRt(P)→ VRt+2ε(Q) | t ≥ 0} — to see why, note
that if ‖p − p′‖ ≤ t then ‖α(p) − α(p′)‖ ≤ t + 2ε by the triangle inequality. Similarly, we get
simplicial maps βt : VRt(Q) → VRt+2ε(P) for every t ≥ 0. For each dimension k ≥ 0, there are
induced maps on homology Hkαt and Hkβt. We will now confirm that these induced maps Hkαt
and Hkβt satisfy the requirements of a 2ε-interleaving (Definition 6.15) between the persistence
modules PHk(VR•P) and PHk(VR•Q).
1. Parallelogram Relations: For each s ≤ t, let’s denote the Vietoris-Rips inclusion maps as

is≤t : VRs(P) ↪→ VRt(P) and js≤t : VRs(Q) ↪→ VRt(Q).

By definition, we have αt ◦ is≤t = js+2ε≤t+2ε ◦ αs; now functoriality (i.e., Theorem 4.8) guarantees
that the maps induced on k-th homology by αs and αt satisfy the parallelogram relation (see
Definition 6.15).

Hkαt ◦Hkis≤t = Hk js+2ε≤t+2ε ◦Hkαs

An eerily similar argument establishes the parallelogram relation for Hkβt.
2. Triangle Relations: For each t ≥ 0, note that the composite simplicial map

βt+2ε ◦ αt : VRt(P)→ VRt+4ε(P)

sends each vertex p to the vertex p′ = β ◦ α(p); by the triangle inequality we have ‖p− p′‖ ≤ 4ε.
If σ = (p0, . . . , pm) is any m-simplex in VRt(P), then the inclusion map it≤t+4ε sends σ to σ,
while the composite βt+2ε ◦ αt sends it to σ′ = (p′0, . . . , p′m), with p′i = β ◦ α(pi) for all i. It
is easily confirmed that σ ∪ σ′ is a simplex in VRt+4ε(P) by the triangle inequality. Thus, the
simplicial maps it≤t+4ε and βt+2ε ◦ αt are contiguous (in the sense of Corollary 2.9) and hence
homotopic. By the homotopy invariance of homology (Theorem 4.24), their induced maps on
homology coincide, and we obtain the desired triangle relation

Hkβt+2ε ◦Hkαt = Hkit≤t+4ε.

A similar argument (with the roles of α and β interchanged) establishes the second triangle
relation as well, and yields the desired result. �

As a consequence of the stability theorem, we see that for any P, Q ⊂ Rn satisfying the hy-
potheses of the above result, the k-th Vietoris-Rips persistent homology barcodes of P and Q
must have the same number of sufficiently long bars, i.e., there is a bijection between bars of
length ≥ 4ε between the two barcodes in every homological dimension k. In this sense, the
longer bars are stable to the sorts of perturbations which would replace P with Q. On the other
hand, persistent homology is not stable to egregious outliers. In other words, if one obtains Q
from P by adding just one point very far away from the existing points of P, then there is no
relationship in general between the barcodes of P and those of Q.
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EXERCISES

EXERCISE 6.1. Let (V•, a•) and (W•, b•) be N-indexed persistence modules over a field F.
Show that for all i ≤ j, there is an isomorphism

PHi→j
(
(V•, a•)⊕ (W•, b•)

)
' PHi→j(V•, a•)⊕ PHi→j(W•, b•)

of persistent homology groups.

EXERCISE 6.2. Let L ⊂ K be a two-step filtration of a simplicial complex K. Describe how
to extract the dimension of the relative homology group Hk(K, L) for each k ≥ 0 given the
barcodes (with multiplicity) of this filtration.

EXERCISE 6.3. Let F•K be a filtration of a simplicial complex K. For each dimension k ≥ 0
and filtration index i, describe how to compute the k-th Betti number of FiK from the barcode
PHk(F•K).

EXERCISE 6.4. Show that the interpolation of (4) produces an R+-indexed persistence mod-
ule from an N-indexed one.

EXERCISE 6.5. Describe a notion of morphisms which turn R+-indexed persistence mod-
ules into a category (if this is done correctly, the N-indexed persistence modules will form a
subcategory via (4)). What are the isomorphisms?

EXERCISE 6.6. Show that every R+-indexed interval module is tame.

EXERCISE 6.7. Show that sending a finite type N-indexed persistence module (V•, a•) to a
tame R+-indexed one via (5), and then going back via (4), gives us (V•, a•) back.

EXERCISE 6.8. Show that two (R+-indexed) persistence modules are isomorphic if and only
if they admit a 0-interleaving.

EXERCISE 6.9. Draw commuting diagrams which represent the second parallelogram rela-
tion and the second triangle relation from Definition 6.15.

EXERCISE 6.10. Show that the interleaving distance satisfies the triangle inequality. [Hint:
show that an ε-interleaving between (U•, a•) and (V•, b•) can always be combined with an ε′-
interleaving between (V•, b•) and (W•, c•) to produce an (ε+ ε′)-interleaving between (U•, a•)
and (W•, c•).]

EXERCISE 6.11. Let a < a′ < b < b′ be four positive real numbers. What is the interleaving
distance between the two R+-indexed interval modules (Ia,b

• , ca,b
• ) and (Ia′,b′

• , ca′,b′
• )?

EXERCISE 6.12. Show that the bottleneck distance satisfies the triangle inequality.

EXERCISE 6.13. State and prove a variant of Proposition 6.20 for Čech filtrations.

EXERCISE 6.14. Let S be a sheaf over a simplicial complex K and Σ an S -compatible acyclic
partial matching. Mimic the argument from Proposition 8.8 to show that the Morse complex
of Σ with coefficients in S (see Definition 8.17) is a cochain complex.


